STRUCTURAL DEFECTS AND THEIR RELATIONSHIP TO NUCLEATION OF GaN THIN FILMS
نویسندگان
چکیده
Microstructure and extended defects in ox-GaN films grown by organometallic vapor phase epitaxy on sapphire substrates using low temperature AIN (or GaN) buffer layers have been studied using transmission electron microscopy. The types and distribution of extended defects were correlated with the film growth mode and the layer nucleation mechanism which was characterized by scanning force microscopy. The nature of the extended defects was directly related to the initial three-dimensional growth. It was found that inhomogeneous nucleation leads to a grain-like structure in the buffer; the GaN films then have a columnar structure with a high density of straight edge dislocations at grain boundaries which are less likely to be suppressed by common annihilation mechanisms. Layer-by-layer growth proceeds in many individual islands which is evidenced by the observation of hexagonal growth hillocks. Each growth hillock has an open-core screw dislocation at its center which emits monolayer-height spiral steps.
منابع مشابه
Ion Beam Assisted Deposition of Thin Epitaxial GaN Films
The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy <100 eV) is capable to modify the characteristics of the growing film without generating a large number of irradiation induced defects. The nitrogen ion beam assisted molecular beam epitaxy (ion energy <25 eV) ...
متن کاملGrowth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures.
By the virtue of the nature of the vapor-liquid-solid (VLS) growth process in semiconductor nanowires (NWs) and their small size, the nucleation, propagation, and termination of stacking defects in NWs are dramatically different from that in thin films. We demonstrate germanium-silicon axial NW heterostructure growth by the VLS method with 100% composition modulation and use these structures as...
متن کاملDeterministic Nucleation of InP on Metal Foils with the Thin-Film Vapor−Liquid−Solid Growth Mode
A method for growth of ultralarge grain (>100 μm) semiconductor thin-films on nonepitaxial substrates was developed via the thin-film vapor−liquid−solid growth mode. The resulting polycrystalline films exhibit similar optoelectronic quality as their single-crystal counterparts. Here, deterministic control of nucleation sites is presented by substrate engineering, enabling user-tuned internuclei...
متن کاملSurface passivation and self-regulated shell growth in selective area-grown GaN-(Al,Ga)N core-shell nanowires.
The large surface-to-volume ratio of GaN nanowires implicates sensitivity of the optical and electrical properties of the nanowires to their surroundings. The implementation of an (Al,Ga)N shell with a larger band gap around the GaN nanowire core is a promising geometry to seal the GaN surface. We investigate the luminescence and structural properties of selective area-grown GaN-(Al,Ga)N core-s...
متن کاملDirect observation of crystal defects in an organic molecular crystals of copper hexachlorophthalocyanine by STEM-EELS
The structural analysis of crystal defects in organic thin films provides fundamental insights into their electronic properties for applications such as field effect transistors. Observation of crystal defects in organic thin films has previously been performed at rather low resolution by conventional transmission electron microscopy based on phase-contrast imaging. Herein, we apply for the fir...
متن کامل